Tree-like Polyphenyl Chains with Extremal Degree Distance
نویسندگان
چکیده
Let G be a graph with vertex set V(G) and edge set E(G). For any two vertices x and y in V(G), the distance between x and y, denoted by d(x,y), is the length of the shortest path connecting x and y. The degree of a vertex v in G is the number of neighbors of v in G. Numbers reflecting certain structural features of organic molecules that are obtained from the molecular graph are usually called graph invariants or more commonly topological indices. The oldest and most thoroughly examined use of a topological index in chemistry was by Wiener [1] in the study of paraffin boiling points, and the topological index was called Wiener index or Wiener number.The conventional generalization of W for an arbitrary molecular graph is due to Hosoya [2]. The Wiener index of the graph G, is equals to the sum of distances between all pairs of vertices of the respective molecular graph, i.e., ∑ ⊆ = ) ( } , { ) , ( ) ( G V v u v u d G W .
منابع مشابه
The Extremal Graphs for (Sum-) Balaban Index of Spiro and Polyphenyl Hexagonal Chains
As highly discriminant distance-based topological indices, the Balaban index and the sum-Balaban index of a graph $G$ are defined as $J(G)=frac{m}{mu+1}sumlimits_{uvin E} frac{1}{sqrt{D_{G}(u)D_{G}(v)}}$ and $SJ(G)=frac{m}{mu+1}sumlimits_{uvin E} frac{1}{sqrt{D_{G}(u)+D_{G}(v)}}$, respectively, where $D_{G}(u)=sumlimits_{vin V}d(u,v)$ is the distance sum of vertex $u$ in $G$, $m$ is the n...
متن کاملThe Polyphenyl Chains with Extremal Edge – Wiener Indices ∗
The edge-Wiener index of a connected graph is the sum of the distances between all pairs of edges of the graph. In this paper, we determine the polyphenyl chains with minimum and maximum edge-Wiener indices among all the polyphenyl chains with h hexagons. Moreover, explicit formulas for the edge-Wiener indices of extremal polyphenyl chains are obtained.
متن کاملRandom Walks on Rooted Trees
For arbitrary positive integers h and m, we consider the family of all rooted trees of height h having exactly m vertices at distance h from the root. We refer to such trees as (h,m)-trees. For a tree T from this family, we consider a simple random walk on T which starts at the root and terminates when it visits one of the m vertices at distance h from the root. Consider the problem of finding ...
متن کاملSome results on the reciprocal sum-degree distance of graphs
In this contribution, we first investigate sharp bounds for the reciprocal sum-degree distance of graphs with a given matching number. The corresponding extremal graphs are characterized completely. Then we explore the k-decomposition for the reciprocal sum-degree distance. Finally,we establish formulas for the reciprocal sum-degree distance of join and the Cartesian product of graphs.
متن کاملOn the extremal total irregularity index of n-vertex trees with fixed maximum degree
In the extension of irregularity indices, Abdo et. al. [1] defined the total irregu-larity of a graph G = (V, E) as irrt(G) = 21 Pu,v∈V (G) du − dv, where du denotesthe vertex degree of a vertex u ∈ V (G). In this paper, we investigate the totalirregularity of trees with bounded maximal degree Δ and state integer linear pro-gramming problem which gives standard information about extremal trees a...
متن کامل